

Q.F. José Arcadio Zamora Laborde, M.Sc. Q.F. José Alberto Zamora Guevara

BIOINDICADOR DE LA VIDA ÚTIL DEL FILETE DE TILAPIA (OREOCHROMIS SPP.) REFRIGERADA

Bioindicador de la vida útil del filete de tilapia (Oreochromis spp.) refrigerada

Autores:

Q.F. José Arcadio Zamora Laborde, M.Sc.

Q.F. José Alberto Zamora Guevara

Revisor Par Académico:

Ing. Christian Ronald Armendáriz Zambrano, MEM

Ing. Juan Francisco Farías Delgado, MSc.

Editor:

Ing. Fabrizzio Andrade, MSc.

Diseño y diagramación:

Lcdo. Gabriel Andrés Marcillo Lima

DERECHOS RESERVADOS

Cumplido el trámite ante el Instituto Ecuatoriano de Propiedad Intelectual - IEPI Derechos de Autor Nº GYE-00910

ISBN: 978-9942-30-877-1

Edición Digital Abril 2018

www.liveworkingeditorial.com Guayaquil - Ecuador

CONTENIDO

CONTENIDO	5
SEMBLANZA DE LOS AUTORES	6
AGRADECIMIENTO	8
PRÓLOGO	
1 INTRODUCCIÓN	11
PROBLEMA DE INVESTIGACIÓN	12
OBJETIVO GENERAL	12
OBJETIVOS ESPECÍFICOS	
2 REVISIÓN DE LA LITERATURA	13
HIPÓTESIS	17
3 MATERIALES Y MÉTODOS	17
METODOLOGÍA	18
LA MUESTRA	19
RECOLECCIÓN DE DATOS	19
IMPACTO ECOLÓGICO	19
4 RESULTADOS	20
5 DISCUSIÓN	68
PROMEDIO DE MUESTRAS	70
COMPROBACIÓN DE LA HIPÓTESIS	73
6 CONCLUSIONES	74
7 RECOMENDACIONES	75
8 GLOSARIO	76
ABREVIATURAS	77
9 - RIRLIOGRAFÍA	78

Q.F. José Arcadio Zamora Laborde, M.Sc.

l Q. y F. José Zamora Laborde es guayaquileño ecuatoriano, docente titular de la cátedra de Química Analítica Cuantitativa y Gestión de la Calidad de la Facultad de Ciencias Químicas de la Universidad de Guayaquil, magíster en ciencias en manejo sustentable de recursos bioacuáticos y el medio ambiente.

Gerente Técnico del Laboratorio Jozalabsa S.A. acreditado por el SAE con N° SAE LE C 15-012.

Q.F. José Alberto Zamora Guevara

l químico José Alberto Zamora es guayaquileño ecuatoriano, experto en inocuidad alimentaria, actualmente ejerce el cargo de jefe de laboratorio químico de la empresa certificada internacionalmente en el área y ha venido ejerciendo su profesión en varias empresas alimenticias. Ha obtenido la certificación de auditor interno ISO/IEC 17025 por la SGS Academy International que luego sustentó en el Servicio de Acreditación Ecuatoriano.

AGRADECIMIENTO

Primero le agradezco a Dios por haberme dado toda la fortaleza y ayuda necesaria para terminar esta investigación. A mi hermosa familia, a mis hijos, por el gran apoyo que me ha brindado y la comprensión de esos fines de semana de estudio y sacrificio al no compartir con ellos.

Gracias, que Dios los bendiga

- José Arcadio Zamora Laborde -

AGRADECIMIENTO

Agradezco al creador del universo por darme la fortaleza y sabiduría para lograr mis metas, a mi familia que con sacrificio y dedicación me enseñaron a valorar las cosas importantes de la vida y crecimiento profesional, a mi esposa por su apoyo para ser un ejemplo para mis hijos. A mis colegas y amigos que me apoyaron desinteresadamente.

- José Alberto Zamora Guevara -

PRÓLOGO

a obra presenta una verificación al paradigma del tiempo de almacenamiento de la tilapia en refrigeración, que es una pregunta que se hacen amas de casa y quienes cocinan sus alimentos. Se detalla de forma clara y sencilla desde el momento de que se recoge el pescado en la cadena de distribución del mercado hasta su congelación en una nevera de hogar en que usualmente esta dentro del rango de -1 y -5 grados centígrados. El número de aerobios mesófilos es un bioindicador de la vida útil del filete de tilapia (oreochromis spp) en el proceso de refrigeración y que daña el alimento convirtiéndolo en una amenaza a la salud del consumidor.

Este tipo de obras desmitifican para bien los conocimientos en cuanto a el cuidado de los alimentos en el hogar y a los mercadólogos el manejo de su vida productiva en la venta del producto, con esta información, se logrará hacer un análisis profundo de como comercializar mejor y como precaver la salud del hogar. El estudio logra dilucidar por qué los filetes de tilapia puedan ser consumidos en un lugar mucho más lejano del que se lo procesa, por lo que se necesita corroborar que tenga un tiempo de vida útil mucho más largo que el que exigen las leyes de salud.

1.- INTRODUCCIÓN

Las bacterias aerobias mesófilas son muy comunes y caracterizan la salubridad de los alimentos, además del tiempo de vida útil del mismo, por lo que es necesario definir la cantidad de aerobios que crecen en la faena de una tilapia y qué cantidad se reproducen durante el tiempo de proceso de dicho filete, hasta que llega al enfriamiento a -1°C y es empacado para su comercialización.

En este medio el tiempo de vida útil que se le otorga a un producto fresco perecible es de aproximadamente tres días; en el estudio realizado se llegó hasta que este producto sea consumible en un tiempo mayor y que su vida útil sea superior, tomando en consideración a las especificaciones microbiológicas, entiéndase como el máximo número aceptable de microrganismos o de tipos específicos de microrganismos, determinado por los métodos precisos, en alimento comprado por una firma u organismo para su propio uso.

El motivo del estudio es lograr que los filetes de tilapia puedan ser consumidos en un lugar mucho más lejano del que se lo procesa, por lo que se necesita corroborar que tenga un tiempo de vida útil mucho más largo que el que exigen las leyes de salud; para ello, se emplearon técnicas microbiológicas descritas en el manual de la ICMSF (Microrganismos de los Alimentos – Técnicas de análisis microbiológico- Volumen 1), específicamente para la determinación cuantitativa de Aerobios Mesófilos.

Se empleó el método de recuento en placas que es el más comúnmente utilizado en este tipo de determinaciones. Este método tiene especial aplicación en los alimentos importados porque en este caso el país importador no tiene la posibilidad de poder controlar el grado de limpieza y desinfección practicado en las industrias productoras de alimentos.

PROBLEMA DE INVESTIGACIÓN

¿Cómo se relaciona el número de aerobios mesófilos con el tiempo de vida útil de los filetes refrigerados de la Tilapia (Oreochromis spp) a temperatura constante de 1-5 °C?

OBJETIVO GENERAL

Evaluar la relación existente entre el número de aerobios mesófilos y el tiempo de vida útil de los filetes refrigerados de la Tilapia (Oreochromis spp) a temperatura constante de 1-5 °C.

OBJETIVOS ESPECÍFICOS

- Determinar el número de aerobios mesófilos a los 0, 5, 10, 15 días después de producido, de una muestra de filete de tilapia a temperatura constante de refrigeración de 1-5 °C.
- Cuantificar el crecimiento bacteriano en relación con el tiempo de conservación del filete.
- Comparar los resultados obtenidos con los estándares AOAC de crecimiento bacteriano para un alimento.
- Determinar el tiempo de vida útil máximo para que el filete sea apto para el consumo humano.
- Diseñar un procedimiento para la determinación del tiempo de vida útil de los filetes refrigerados de la Tilapia (Oreochromis spp) a temperatura constante de 1-5 °C a partir del conteo de aerobios mesófilos.

2.- REVISIÓN DE LA LITERATURA

La Tilapia roja (Oreochromis mosssambicus spp.), también conocida como Mojarra roja, es un pez que taxonómicamente no responde a un solo nombre científico. Es un híbrido producto del cruce de cuatro especies de Tilapia: tres de ellas de origen africano y una cuarta israelí. Son peces con hábitos territoriales, agresivos en su territorio el cual defiende frente a cualquier otro pez, aunque en cuerpos de aguas grandes, típicos de cultivos comerciales, esa agresividad disminuye y se limita al entorno de su territorio.

En cuanto al dimorfismo sexual de la especie, se ha mencionado que los machos son más grandes y poseen mayor brillo y color, que las hembras. La reproducción se caracteriza por ocurrir una incubación bucal, además de que se cuida la cría.

Respecto a su alimentación, la tilapia roja, come todo tipo de alimentos vivos, frescos y congelados. Asimismo aceptan alimentos secos para peces, en particular pellets humectados previamente. Los machos de la tilapia crecen más rápidamente y alcanza un tamaño mayor que la hembra. En cultivo comercial alcanzan dimensiones de hasta 39 cm, aunque en acuario un poco menos. (Jiménez, 2007).

La tilapia o Mojarra Negra (Oreochromis niloticus), especie originaria de África. Su régimen alimentario en ambientes originarios es a base de fitoplancton y detritus orgánicos. Su rango óptimo de producción es con temperaturas de 25-30 °C. Son sensibles a bajas temperaturas, con un límite letal de cerca de los 9 a 13 °C. Es una de las especies más altamente cultivada en todo el mundo. (Jiménez, 2007).

Los microrganismos son los agentes más importantes en la alteración del pescado fresco ya que son los que originan los sabores particularmente indeseables ligados a la alteración. Por tanto, el control de la alteración es en gran parte, el control de los microrganismos. (Connel, 1978).

Los microrganismos se encuentran en la superficie externa y en las vísceras del animal pero durante la vida no invaden la carne estéril debido a que está protegido por las defensa naturales. (CORPEI, 2001)

Guijarro (2007), estudia el desarrollo de un sistema de envase y embalaje para la exportación del filete de tilapia roja ecuatoriana hacia el mercado norteamericano. El autor analiza los factores que influyen dentro de la producción del filete de tilapia roja y las alternativas de los diferentes tipos de envases que sirvan para la exportación de este producto. Adicionalmente se analiza todas las normas exigidas por el Gobierno Federal Norteamericano para la importación de productos alimenticios; y la normas exigidas por el gobierno Ecuatoriano para la exportación de productos alimenticios.

El estudio concluye acotando que si se utiliza un sistema de envase y embalaje adecuado

para la exportación del filete de tilapia roja, este no tendrá ningún inconveniente en poder ingresar al mercado norteamericano. Finalmente se propone un sistema de envase para la exportación del filete del tilapia roja Ecuatoriana.

Fiallos (2010), indica que el uso de una atmósfera modificada en el empaque de productos alimenticios es un método poco difundido en el Ecuador, convirtiéndose en un área interesante para la investigación y el desarrollo de nuevos productos los cuales permitirían a la industria alimenticia ecuatoriana incursionar en nuevos mercados.

El objetivo del trabajo fue determinar que tanto se puede alargar el tiempo de vida útil de la tilapia fresca sin afectar la línea de sangre, teniendo en cuenta que el pescado es un producto altamente perecedero debido a las condiciones óptimas que presenta para el crecimiento de microrganismos y la facilidad de descomponerse tanto por reacciones enzimáticas como bioquímicas.

La principal ventaja del uso de EAM es el de poder extender el tiempo de vida útil de un producto sin alterar sus propiedades físicas, químicas y organolépticas permitiendo llevar un producto más fresco al consumidor final. Otra ventaja importante es la eliminación total de aditivos y preservantes, usados tradicionalmente en las industrias alimenticias, los cuales aumentan la desconfianza del consumidor optando por productos más naturales.

De acuerdo a **Suárez** (2010), mediante la hidrólisis enzimática de proteínas hasta péptida o aminoácidos, por la acción de enzimas proteolíticas se obtienen hidrolizados con una composición final que los hace aplicables en la tecnología alimentaria por sus propiedades nutricionales o funcionales. Además del proceso de hidrólisis, la autora plantea que existen una serie de factores que necesitan considerarse, como la naturaleza y calidad de la materia prima, la enzima escogida y las condiciones de reacción.

Usando como sustrato de proteína filetes de tilapia roja y evaluando sobre éstos diferentes concentraciones de enzimas, se obtuvieron hidrolizados con diferentes valores de actividad emulsionante y de solubilidad. Fue posible además proponer un diseño conceptual para la obtención de hidrolizados comprendiendo las variables y condiciones de reacción.

Según Álvarez et al. (2004), el uso indiscriminado de los antimicrobianos ejerce fuerte presión selectiva en las bacterias, lo que causa el surgimiento y diseminación de genes de resistencia a ellos. Los autores evaluaron la resistencia bacteriana en tilapias silvestres y cultivadas y determinaron la concentración inhibitoria mínima para los antimicrobianos seleccionados. La sensibilidad fue evaluada utilizando dos métodos: uno semi cuantitativo de difusión a partir del disco en agar Mueller-Hinton y uno cuantitativo determinando la concentración inhibitoria mínima (CIM). Se registraron variaciones en las diferentes especies,

detectándose multi-resistencia en todas las bacterias, con una mayor resistencia en ambiente de cultivo (8-12 compuestos) que en ambiente natural.

El ácido oxolínico, compuesto ampliamente usado en la acuicultura y que carece de importancia en salud pública, parece ser el más útil en inhibir el desarrollo de estas bacterias, con una CIM en el rango de 0,5–10 μg/ml. La elevada resistencia y los valores amplios de CIM detectados destacan el hecho de que el uso de los antimicrobianos debe realizarse en forma responsable, con un estudio previo de la resistencia in vitro, para evitar la selección de cepas bacterianas resistentes.

Morales et al. (2004), evaluaron la flora normal y patógena asociada a la tilapia (Oreochromis niloticus). Con este propósito, determinó el Recuento Total Aerobio (RT), el número de coliformes totales (CT) y coliformes fecales (CF), Enterococcus spp., Aeromona spp., bacterias lácticas y la presencia de Listeria spp y Salmonella spp. a partir de la superficie externa de la tilapia. Los resultados obtenidos confirman, desde el punto de vista microbiológico, la frescura de las tilapias al momento de su análisis, sin embargo, los niveles de coliformes encontrados fueron inaceptables para el consumo humano.

Los autores no lograron aislar Listeria spp., pero el aislamiento de Salmonella spp confirmó la contaminación fecal de las aguas de crianza de la tilapia, aparte de su importancia a nivel de salud pública. También se encontró que la tilapia presenta un número elevado de Aeromona spp como parte de su flora normal, por lo que se recomienda incluir este género dentro de las normas de calidad para pescado fresco. Según los datos obtenidos, no existe diferencia significativa (95% de confianza) entre el RT, los niveles de CT y CF, Enterococcus spp y Aeromona spp a partir de la tilapia proveniente de criaderos. (Morales et al. 2004)

Morales et al. (2004), compararon los resultados de recuento total aerobio con los parámetros establecidos por al ICMSF (International Comission for the Microbiological Examination of Foods, 1998) para pescado crudo (10); se encontró que únicamente 12% de las muestras presentan una aceptación marginal y ninguna sobrepasa el límite de 10⁷ UFC/g, lo cual refleja la frescura del producto en el momento del análisis. Un segundo parámetro contemplado por la ICMSF para pescado crudo establece un límite máximo de 5,0 x 10² UFC/g para coliformes fecales; 58% de las muestras evaluadas presentaron valores superiores y por lo tanto inaceptables.

Tome et al.(2009), evalúan el impacto de tres temperaturas de almacenamiento en el rigor mortis y en la estabilidad de la tilapia (O. mossambicus x O. urolepis hormorum x O. niloticus x O. aureus) durante su almacenamiento. Para la determinación del índice del rigor (IR) de las tilapias sometidas a tres temperaturas de almacenamiento se utilizó el método

de desplazamiento horizontal. Las concentraciones individuales de los nucleótidos se determinaron usando cromatografía líquida de alta resolución (HPLC). Los cambios sensoriales fueron evaluados durante 21 días de almacenamiento refrigerado, mediante una escala descriptiva. También se hicieron mediciones del pH muscular y del Nitrógeno Básico Volátil Total (NBV-T). El rigor mortis ocurrió más tempranamente en el pescado almacenado a 0° C (24 h) en comparación con el pescado almacenado a 10° C (48 h) y a 27° C (no se alcanzó 100% de IR). El pH cayó más rápidamente (P<0.05) en el pescado almacenado a 10° C. Al final del almacenamiento, el NBV-T no superó los 30 mg N/100 g permitidos en productos pesqueros. Para cada condición de temperatura, la tilapia parece acumular hipoxantina (Hx) junto con pequeñas cantidades de inosina (INO) paralelamente con la degradación de inosina monofosfato (IMP). La evaluación sensorial indicó una vida útil de 21 días para las tilapias almacenadas a 0° C en comparación con 9 días para las tilapias almacenadas a 10° C

Suárez et al. (2007), estudian la conformación e importancia del tejido conectivo de la carne de los peces. Los investigadores plantean que ablandamiento post mortem en los peces es un factor de calidad directamente influenciado por las características de los colágenos presentes en cada especie. La degradación del colágeno está relacionada con los fenómenos que acontecen durante el almacenamiento en frío o congelamiento. Varias investigaciones han demostrado a través de análisis bioquímicos y, principalmente, a través de microscopia electrónica de barrido y transmisión, que la pérdida de la textura en la carne de los peces es uno de los efectos ocasionados por la degradación del tejido conectivo peri celular y no por el tejido conectivo intersticial. En la actualidad son propuestas algunas prácticas pos cosecha para disminuir este fenómeno.

De acuerdo a los autores anteriormente citados, generalmente el término "calidad" se refiere a la apariencia estética y frescura, o al grado de deterioro que ha sufrido el pescado. También puede involucrar aspectos de seguridad como: ausencia de bacterias peligrosas, parásitos o compuestos químicos. Es importante recordar que "calidad" implica algo diferente para cada persona y es un término que debe ser definido en asociación con un único tipo de producto. Por ejemplo, generalmente se piensa que la mejor calidad se encuentra en el pescado que se consume dentro de las primeras horas post mortem. Sin embargo, el pescado muy fresco que se encuentra en rigor mortis es difícil de filetear y desollar, y generalmente no resulta apropiado para ahumar. Así, para el procesador, el pescado de tiempo ligeramente mayor que ha pasado a través del proceso de rigor es más deseable. (Suárez et. al. 2007)

De acuerdo a **Huss (1999)**, los métodos para la evaluación de la calidad del pescado fresco pueden ser convenientemente divididos en dos categorías: sensorial e instrumental. Dado que el consumidor es el último juez de la calidad, la mayoría de los métodos químicos o instrumentales deben ser correlacionados con la evaluación sensorial antes de ser empleados en el laboratorio. Sin embargo, los métodos sensoriales deben ser realizados científicamente;

bajo condiciones cuidadosamente controlados para que los efectos del ambiente y prejuicios personales, entre otros, puedan ser reducidos.

La evaluación sensorial es definida como una disciplina científica, empleada para evocar, medir, analizar e interpretar reacciones características del alimento, percibidas a través de los sentidos de la vista, olfato, gusto, tacto y audición. La mayoría de las características sensoriales sólo pueden ser medidas significativamente por humanos. Sin embargo, se han efectuado avances en el desarrollo de instrumentos que pueden medir cambios individuales de la calidad. Los instrumentos capaces de medir parámetros incluidos en el perfil sensorial son: el Instron y el Reómetro de Bohlin, para medir la textura y otras propiedades geológicas. Métodos microscópicos, combinados con el análisis de imágenes, son usados para determinar cambios estructurales y la "nariz artificial" permite evaluar el perfil de olor (Nanto et al., 1993).

HIPÓTESIS

El número de aerobios mesófilos determina el tiempo de vida útil de los filetes refrigerados de la Tilapia (Oreochromis spp) a temperatura constante de 1-5 °C.

3.- MATERIALES Y MÉTODOS

Se estudiaron filetes de tilapia Oreochromis spp desarrolladas en piscinas de crecimiento de acuicultura del sector de Taura, Guayas. Las tilapias fueron transportadas vivas entre 18-22 °C en camiones-cápsula, degolladas, desangradas y descamadas; de cada tilapia se obtuvieron dos filetes, de lomo y de panza. El filete ya procesado se empacó en la empresa en cajas de poli estireno expandido de cinco libras de capacidad.

Se tomó una caja de cada lote de muestra; se retiró un filete, se cortó y macero con agua de peptona 0.1%. Se prepararon tres diluciones de 1/10, 1/100 y 1/1000. Cada dilución se sembró en agar PCA para el conteo de aerobios totales a 35 °C durante 48 horas. Asimismo, se sembró para la determinación de coliformes totales, fecales y ESCHERICHIA COLI con la técnica del Numero Más Probable (NMP). Se utilizó la técnica bioquímica del IMViC para la identificación de E. COLI.

Los medios de cultivo se esterilizaron en una autoclave vertical All American, Modelo NO 25X.

Todo el material de vidrio que fue empleado, se esterilizo en equipos Memmert de 3 bandejas, modelo U 10 y AESCULAP Modelo ISO 400.

Las muestras de tilapia fueron pesadas en una balanza analítica Mettler H31AR y posterior-

mente incubadas en estufas de cultura Memmert, modelo INB 200, Fanem Modelo 002CB y BLUE M Modelo G1008-Q.

Los reactivos preparados se mantuvieron en un refrigerador Indurama Multiflow. Las contra muestras se guardaron en un Congelador SMC vertical

Las muestras se incubaron en un Termostaic Bath, DSB 100, previo a la identificación de E. COLI.

METODOLOGÍA

Se siguió la metodología establecida por The International Commission (1996).

- Preparar la muestra de Filetes de Tilapia troceándola o cortándola en trozos medianos y dejándola macerar con agua de peptona 0,1 %.
- Pipetear por duplicado en placas de petri, alícuotas de 1 ml de las diluciones 1/10, 1/100, 1/1000, 1/10000, y 1/100000, se aconseja esta serie de diluciones en aquellos casos en que se desconoce el número aproximado de microrganismos presentes en la muestra, de todos modo debe sembrase tres diluciones seguidas.
- Fundir el agar PCA utilizando vapor o agua hirviente, templar el medio a 44 46 °C y controlar cuidadosamente su temperatura, verter inmediatamente en las placas de Petri 10 15 ml de medio fundido y templado.
- Acto seguido, mezclar el inoculo con el medio fundido, de la forma siguiente: (a) imprimir a la placa movimientos de vaivén 5 veces en una dirección, (b) hacerla girar 5 veces en sentido de las agujas del reloj, (c) volver a imprimir movimientos de vaivén en una dirección que forme ángulo recto con la primera y (d) hacerla girar 5 veces en sentido contrario a las agujas del reloj.
- Una vez solidificado el agar, invertir las placas e incubarlas a 35 °C +- 1 °C durante 48 horas.
- Para el cálculo del recuento en placa elegir las dos placas, que presenten entre 30 y 300 UFC. Contar todas las colonias de cada placa, hallar la media aritmética de los dos valores y multiplicarla por el factor de dilución (la inversa de la dilución cuyas placas han sido seleccionadas). Dar el valor obtenido como el recuento en placa.
- Para el cálculo y presentación de los resultados, deben utilizarse únicamente dos cifras significativas, que corresponden a los dígitos primero y segundo de la media de las colonias halladas. Los dígitos restantes tienen que ser sustituidos por ceros.

LA MUESTRA

De la producción se muestreo una caja diaria de 10 libras, seleccionada de forma aleatoria. Cada muestra fue conservada en refrigeración durante los quince días de la investigación.

RECOLECCIÓN DE DATOS

Los resultados se ingresaron a una base de datos en Excel. La información introducida en la base de datos fue obtenida a partir del tercer día después de la siembra microbiológica.

IMPACTO ECOLÓGICO

El proceso productivo de los filetes de tilapia en la planta en donde se realizó la investigación de vida útil cuenta con programas y técnicas de producción acordes al medio ambiente, la tilapia procesada provino de fincas en las que no se utiliza productos químicos que puedan dañar el medio ambiente, así mismo en la planta se utilizan productos biodegradables y amigables al medio ambiente.

4.- RESULTADOS

TABLA 1. 1 Muestra 1

DATOS DEL ANALISIS:	
MUESTRA:	# 1
FECHA DE ANALISIS:	2 de enero de 2008
FECHA DE REPORTE FINAL:	17 de enero de 2008

ENSAYOS	R	ESULTADOS	S UFC/Gramo)	UFC/	Gramo
	02-ene	07-ene	12-ene	17-ene		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	890	1130	1290	1720	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

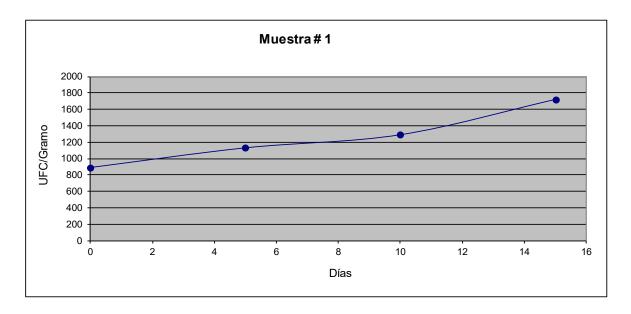


Figura # 1 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la primera quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad
Z1	265.0	38.9230	6.808314	0.0209
C	595.0	106.5950	106.5950 5.581874	
R-squared	0.958638	Mean dependent var		1257.500
Adjusted R-squared	0.937956	S.D. dependent var		349.4162
S.E. of regression	87.03448	Akaike info cri	12.07734	
Sum squared resid	15150.00	Schwarz criterion		11.77049
Log Likelihood	-22.15468	Hannan-Quinn criter.		11.40397
F-statistic	46.35314	Durbin-Watson stat		2.566007
Prob. (F-statistic)	0.020900			

FORMULA:

W1 = 265Z1 + 595 + Ut

TABLA 1. 2 Muestra 2

DATOS DEL ANALISIS:	
MUESTRA:	# 2
FECHA DE ANALISIS INICIAL:	15 de enero de 2008
FECHA DE REPORTE FINAL:	31 de enero de 2008

ENSAYOS	RESULTADOS UFC/Gramo				UFC/Gramo	
	15-Jan	20-Jan	25-Jan	30-Jan		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC.	990	1180	1350	2100	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	_
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03
			000000000000000000000000000000000000000			

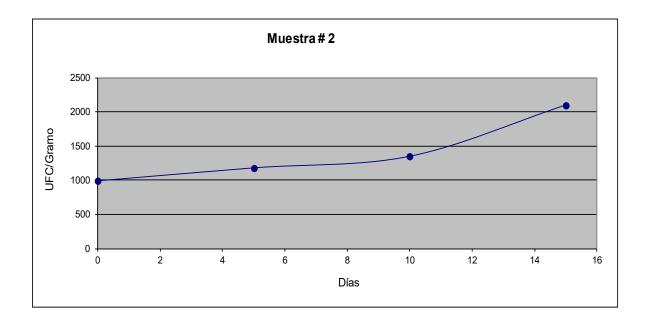


Figura # 2 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la segunda quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad
Z2	236.0	32.43455	7.276192	0.0184
C	720.0	88.82567	8.105765	0.0149
	,	,		
R-squared	0.963599	Mean depend	ent var	1310.000
Adjusted R-squared	0.945398	S.D. depende	nt var	310.3761
S.E. of regression	72.52586	Akaike info c	riterion	11.71262
Sum squared resid	10520.00	Schwarz crite	rion	11.40576
Log Likelihood	-21.42523	Hannan-Quin	n criter.	11.03925
F-statistic	52.94297	Durbin-Watso	on stat	2.322053
Prob. (F-statistic)	0.018369			

FORMULA:

W2 = 236Z2 + 720 + Ut

TABLA 1. 3 Muestra 3

DATOS DEL ANALISIS:	
MUESTRA:	# 3
FECHA DE ANALISIS:	31 de enero de 2008
FECHA DE REPORTE FINAL:	16 de febrero de 2008

ENSAYOS	R	ESULTADOS	S UFC/Gramo)	UFC/Gramo	
	31-Jan	5-Feb	10-Feb	15-Feb		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	1050	1230	1800	2600	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

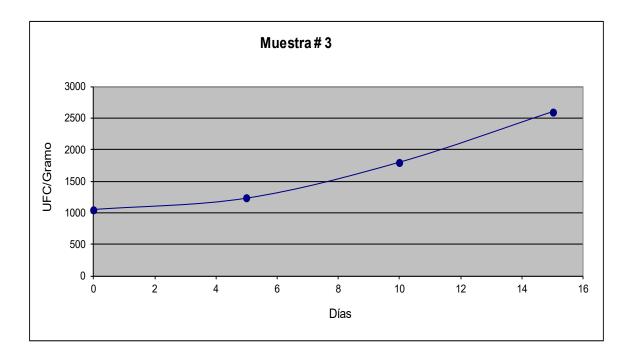


Figura # 3 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la tercera quincena.

Variable	Coeficiente	Erro	or Std.	t-Estadístico	Probabilidad
Z3	522.0		98.68131	5.289756	0.0339
C	365.0		270.2499	1.350602	0.3093
R-squared	0.9	33292	Mean depe	endent var	1670.000
Adjusted R-squared	d 0.8	99938	S.D. depen	dent var	697.5672
S.E. of regression	220	0.6581	Akaike inf	o criterion	13.93796
Sum squared resid	973	380.00	Schwarz cı	riterion	13.63111
Log Likelihood	-25	.87592	Hannan-Q	uinn criter.	13.26459
F-statistic	27.	.98152	Durbin-Wa	atson stat	2.018402
Prob. (F-statistic)	0.0	33929			

FORMULA:

$$W3 = 522Z3 + 365 + Ut$$

TABLA 1. 4 Muestra 4

DATOS DEL ANALISIS:	
MUESTRA:	# 4
FECHA DE ANALISIS:	14 de febrero de 2008
FECHA DE REPORTE FINAL:	1 de marzo de 2008

ENSAYOS	RESULTADOS UFC/Gramo			UFC/Gramo		
	14-Feb	19-Feb	24-Feb	29-Feb		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	980	1350	1600	2100	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

Figura # 4 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la cuarta quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad	
Z5	361.0000	33.27161	10.85009	0.0084	
C	605.0000	91.11806	6.639738	0.0219	
R-squared	R-squared 0.983295		Mean dependent var		
Adjusted R-squared	0.974942	S.D. dependent var		469.9911	
S.E. of regression	74.39758	Akaike info criterion		11.76358	
Sum squared resid	11070.00	Schwarz criterion		11.45672	
Log Likelihood	-21.52715	Hannan-Quinn criter.		11.09021	
F-statistic	117.7245	Durbin-Watson stat		2.865673	
Prob. (F-statistic)	0.008388				

FORMULA:

W4 = 361Z4 + 605 + Ut

TABLA 1. 5 Muestra 5

DATOS DEL ANALISIS:	
MUESTRA:	#5
FECHA DE ANALISIS:	1 de marzo de 2008
FECHA DE REPORTE FINAL:	17 de marzo de 2008

ENSAYOS	RESULTADOS UFC/Gramo)	UFC/Gramo	
	1-Mar	6-Mar	11-Mar	16-Mar		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	880	1220	1450	1950	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	<u>-</u>
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

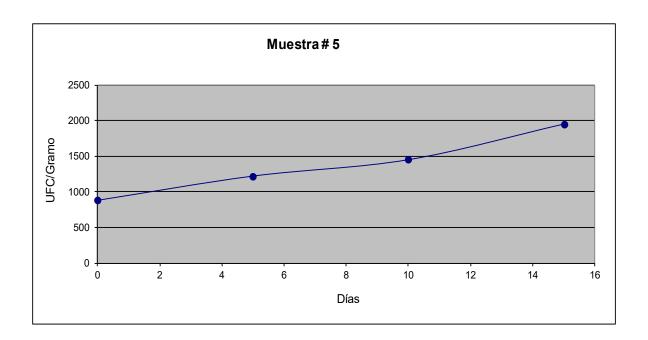


Figura # 5 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la quinta quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad
Z5	344.0000	36.90528	9.321158	0.0113
C	515.0000	101.0693	5.095515	0.0364
R-squared	0.977499	Mean dependent var		1375.000
Adjusted R-squared	0.966248	S.D. dependent var		449.1844
S.E. of regression	82.52272	Akaike info criterion		11.97088
Sum squared resid	13620.00	Schwarz criterion		11.66402
Log Likelihood	-21.94175	Hannan-Quinn criter.		11.29751
F-statistic	86.88399	Durbin-Watson stat		2.742144
Prob. (F-statistic)	0.011315			

FORMULA:

W5 = 344Z5 + 515 + Ut

TABLA 1. 6 Muestra 6

MUESTRA:	# 6
FECHA DE ANALISIS:	16 de marzo de 2008
FECHA DE REPORTE FINAL:	1 de abril de 2008

ENSAYOS	R	RESULTADOS UFC/Gramo			UFC/Gramo	
	16-mar	21-mar	26-mar	31-mar		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	1100	1360	1580	2200	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

Figura # 6 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la sexta quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad
Z6	352.0000	64.86910	5.426312	0.0323
С	680.0000	177.6513	3.827722	0.0620
R-squared	0.936397	Mean dependent var		1560.000
Adjusted R-squared	0.904595	S.D. dependen	t var	469.6098
S.E. of regression	145.0517	Akaike info cr	iterion	13.09891
Sum squared resid	42080.00	Schwarz criterion		12.79206
Log Likelihood	-24.19782	Hannan-Quinn criter.		12.42554
F-statistic	29.44487	Durbin-Watson stat		2.322053
Prob. (F-statistic)	0.032324			

FORMULA:

W6 = 352Z6 + 680 + Ut

TABLA 1. 7 Muestra 7

DATOS DEL ANALISIS:	
MUESTRA:	#7
FECHA DE ANALISIS:	1 de abril de 2008
FECHA DE REPORTE FINAL:	17 de abril de 2008

ENSAYOS	Р	RESULTADOS UFC/Gramo				UFC/Gramo	
	01-abr	06-abr	11-abr	16-abr			
días:	0	5	10	15	m	М	
Contaje de Aerobios Totales a 35 oC Contormes recares	1120 '''AOSENCIA'''	1360	1680	2450	1000	10 000	
Escherichia Colí	AUSENCIA					† ·	
Salmonellas Spp	AUSENCIA						
Stafilococos Aureus Coag. +	AUSENCIA				5 x 10E02	1 x 10E03	

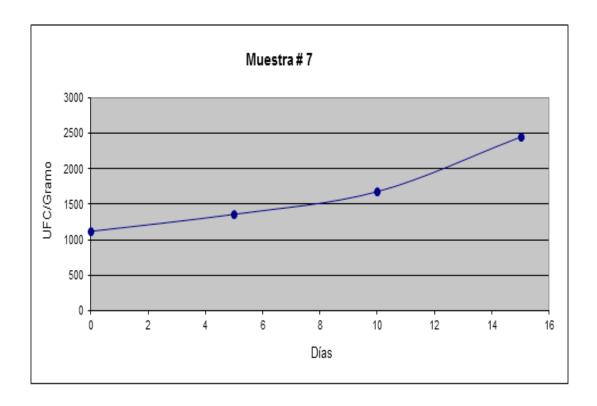


Figura # 7 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la séptima quincena.

Coeficiente	Error Std.	t-Estadístico	Probabilidad
431.0000	87.78952	4.909470	0.0391
575.0000	240.4215	2.391633	0.1392
0.923380	Mean depender	nt var	1652.500
0.885070	S.D. dependent var		579.0438
196.3033	Akaike info criterion		13.70405
77070.00	Schwarz criterion		13.39720
-25.40810	Hannan-Quinn	criter.	13.03069
24.10289	Durbin-Watson stat		2.124342
0.039073			
	431.0000 575.0000 0.923380 0.885070 196.3033 77070.00 -25.40810 24.10289	431.0000 87.78952 575.0000 240.4215 0.923380 Mean dependent 0.885070 S.D. dependent 196.3033 Akaike info cri 77070.00 Schwarz criteri -25.40810 Hannan-Quinn 24.10289 Durbin-Watson	431.0000 87.78952 4.909470 575.0000 240.4215 2.391633 0.923380 Mean dependent var 0.885070 S.D. dependent var 196.3033 Akaike info criterion 77070.00 Schwarz criterion -25.40810 Hannan-Quinn criter. 24.10289 Durbin-Watson stat

FORMULA:

W7 = 431Z7 + 575 + Ut

TABLA 1. 8 Muestra 8

DATOS DEL ANALISIS:	
MUESTRA:	#8
FECHA DE ANALISIS:	15 de abril de 2008
FECHA DE REPORTE FINAL:	1 de mayo de 2008

ENSAYOS	RESULTADOS UFC/Gramo				UFC/Gramo	
	15-abr	20-abr	25-a.br	30-abr		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	1080	1340	1700	2320	1000	10 000
Coliformes Fecales	AUSENCIA	-		-	4	100
Escherichia Colí	AUSENCIA			-		-
Salmonellas Spp	AUSENCIA	-	-	-		-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1×10E03

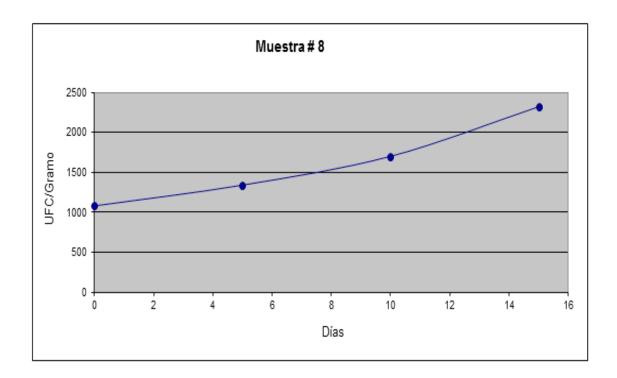


Figura # 8 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la octava quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad
Z8	408.0000	58.03447	7.030304	0.0196
C	590.0000	158.9339	3.712234	0.0655
R-squared	0.961109	Mean depende	nt var	1610.000
Adjusted R-squared	0.941663	S.D. dependen	S.D. dependent var	
S.E. of regression	129.7690	Akaike info cr	iterion	12.87624
Sum squared resid 33680.00		Schwarz criter	12.56939	
Log Likelihood	-23.75248	Hannan-Quinn	criter.	12.20288
F-statistic	49.42518	Durbin-Watson	n stat	2.053207
Prob. (F-statistic)	0.019639			

FORMULA:

W8 = 408Z8 + 590 + Ut

TABLA 1. 9 Muestra 9

DATOS DEL ANALISIS:	
MUESTRA:	# 9
FECHA DE ANALISIS:	1 de mayo de 2008
FECHA DE REPORTE FINAL:	17 de mayo de 2008

ENSAYOS	RESULTADOS UFC/Gramo				UFC/Gramo	
	1-May	6-May	11-May	16-May		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	950	1280	1680	2150	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

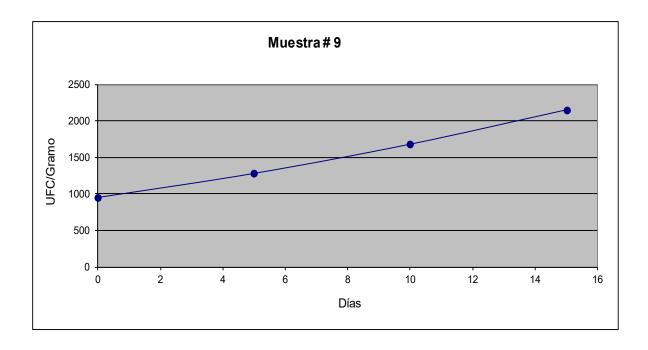


Figura # 9 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la novena quincena.

Variable	Coeficiente	Error Std.	Error Std. t-Estadístico Proba	
Z9	400.0000	22.13594	18.07016	0.0030
C	515.0000	60.62178	8.495297	0.0136
R-squared	0.993912	Mean depende	ent var	1515.000
Adjusted R-squared	0.990868	S.D. depender	S.D. dependent var	
S.E. of regression	49.49747	Akaike info cr	Akaike info criterion	
Sum squared resid	4900.000	Schwarz criter	Schwarz criterion	
Log Likelihood	-19.89715	Hannan-Quinn criter.		10.27521
F-statistic	326.5306	Durbin-Watso	n stat	2.000000
Prob. (F-statistic)	0.003049			

FORMULA:

W9 = 400Z9 + 515 + Ut

TABLA 1. 10 Muestra 10

DATOS DEL ANALISIS:	
MUESTRA:	# 10
FECHA DE ANALISIS:	15 de mayo de 2008
FECHA DE REPORTE FINAL:	31 de mayo de 2008

ENSAYOS	RESULTADOS UFC/Gramo			UFC/Gramo		
	15-May 20-May 25-May 30-May		30-May			
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	1120	1470	1850	2430	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

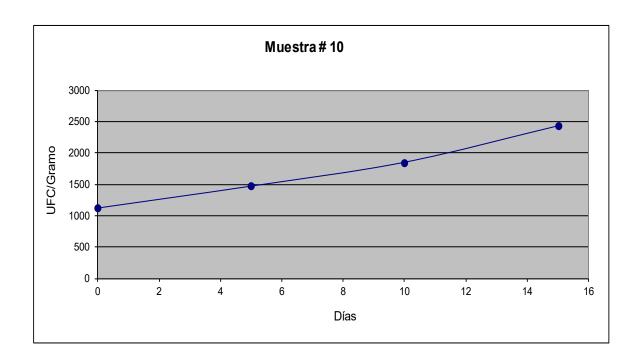


Figura # 10 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza

de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la decima quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad
Z10	431.0000	38.30144	11.25284	0.0078
C	640.0000	104.8928	6.101467	0.0258
R-squared	0.984451	Mean depende	ent var	1717.500
Adjusted R-squared	0.976677	S.D. dependen	t var	560.7956
S.E. of regression	85.64461	Akaike info cr	iterion	12.04514
Sum squared resid	14670.00	Schwarz criter	ion	11.73829
Log Likelihood	-22.09029	Hannan-Quinn	criter.	11.37178
F-statistic	126.6264	Durbin-Watson	n stat	2.137900
Prob. (F-statistic)	0.007805			

FORMULA:

W10 = 431Z10 + 640 + Ut

TABLA 1. 11 Muestra 11

DATOS DEL ANALISIS:	
MUESTRA:	# 11
FECHA DE ANALISIS:	1 de junio de 2008
FECHA DE REPORTE FINAL:	17 de junio de 2008

ENSAYOS	RESULTADOS UFC/Gramo				UFC/Gramo	
	01-jun	06-jun	11-jun	16-jun		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	1200	1480	1870	2350	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

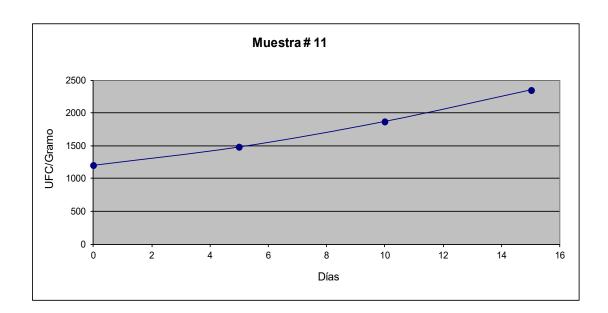


Figura # 11 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la decima primera quincena.

Variable	Coeficiente	Error Std. t-Estadístico P		Probabilidad
Z11	384.0000	31.65438	12.13102	0.0067
C	765.0000	86.68910	8.824639	0.0126
R-squared	0.986592	Mean dependent var		1725.000
Adjusted R-squared	0.979888	S.D. dependen	t var	499.0992
S.E. of regression	70.78135	Akaike info cr	iterion	11.66392
Sum squared resid	10020.00	Schwarz criter	Schwarz criterion	
Log Likelihood	-21.32784	Hannan-Quinn criter.		10.99056
F-statistic	147.1617	Durbin-Watson stat		2.002794
Prob. (F-statistic)	0.006727			

FORMULA:

W11 = 384Z11 + 765 + Ut

TABLA 1. 12 Muestra 12

DATOS DEL ANALISIS:	
MUESTRA:	# 12
FECHA DE ANALISIS:	15 de junio de 2008
FECHA DE REPORTE FINAL:	1 de julio de 2008

ENSAYOS	RESULTADOS UFC/Gramo				UFC/Gramo	
	15-Jun	20-Jun	25-Jun	30-Jun		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	1070	1370	1690	2310	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

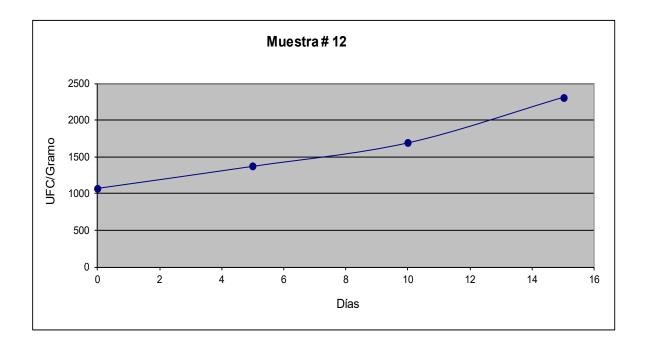


Figura # 12 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la decima segunda quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad		
Z12	404.0000	54.33231 7.435723		0.0176		
C	600.0000	148.7952 4.032389		148.7952 4.032389		0.0564
R-squared	0.965090	Mean dependent var		1610.000		
Adjusted R-squared	0.947635	S.D. dependen	t var	530.9112		
S.E. of regression	121.4907	Akaike info cr	iterion	12.74441		
Sum squared resid	29520.00	Schwarz criter	ion	12.43755		
Log Likelihood	-23.48881	Hannan-Quinn	Hannan-Quinn criter.			
F-statistic	55.28997	Durbin-Watson	2.185908			
Prob. (F-statistic)	0.017610					

FORMULA:

W12 = 404Z12 + 600 + Ut

TABLA 1. 13 Muestra 13

DATOS DEL ANALISIS:	
MUESTRA:	#13
FECHA DE ANALISIS:	1 de julio de 2008
FECHA DE REPORTE FINAL:	17 de julio de 2008

ENSAYOS	RESULTADOS UFC/Gramo				UFC/Gramo	
	1-Jul 6-Jul 11-Jul 16-Jul			16-Jul		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	990	1360	1660	2280	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

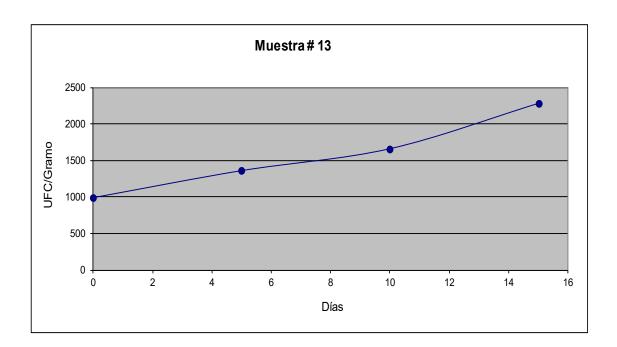


Figura # 13 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la decima tercera quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad		
Z13	417.0000	48.19751	8.651899	0.0131		
C	530.0000	131.9943 4.015324		131.9943 4.015324		0.0568
R-squared	0.973977	Mean dependent var		1572.500		
Adjusted R-squared	0.960966	S.D. depender	nt var	545.4891		
S.E. of regression	107.7729	Akaike info cı	riterion	12.50478		
Sum squared resid	23230.00	Schwarz criter	Schwarz criterion			
Log Likelihood	-23.00957	Hannan-Quinn criter.		11.83142		
F-statistic	74.85536	Durbin-Watson stat		2.458330		
Prob. (F-statistic)	0.013097					

FORMULA:

W13 = 417Z13 + 530 + Ut

TABLA 1. 14 Muestra 14

DATOS DEL ANALISIS:	
MUESTRA:	# 14
FECHA DE ANALISIS:	14 de julio de 2008
FECHA DE REPORTE FINAL:	30 de julio de 2008

ENSAYOS	R	ESULTADOS)	UFC/Gramo		
	14-Jul	19-Jul	24-Jul	29-Jul		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	970	1340	1750	2340	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03



Figura # 14 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la decima cuarta quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad	
Z14	452.0000	36.16628	12.49783	0.0063	
C	470.0000	99.04544	4.745297	0.0417	
R-squared	0.987357	Mean dependent var		1600.000	
Adjusted R-squared	0.981036	S.D. dependen	S.D. dependent var		
S.E. of regression	80.87027	Akaike info cr	Akaike info criterion		
Sum squared resid	13080.00	Schwarz criter	Schwarz criterion		
Log Likelihood	-21.86084	Hannan-Quinn criter.		11.25706	
F-statistic	156.1957	Durbin-Watson stat		2.104893	
Prob. (F-statistic)	0.006341				

FORMULA:

W14 = 452Z14 + 470 + Ut

TABLA 1. 15 Muestra 15

DATOS DEL ANALISIS:	
MUESTRA:	# 15
FECHA DE ANALISIS:	1 de agosto de 2008
FECHA DE REPORTE FINAL:	17 de agosto de 2008

ENSAYOS	R	ESULTADOS	UFC/	Gramo		
	1-Aug	6-Aug	11-Aug	16-Aug		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	1080	1220	1390	1690	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

Figura # 15 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la decimo quinta quincena.

Variable	Variable Coeficiente Error Std. t-Estac		t-Estadístico	Probabilidad	
Z15	200.0000	26.26785	7.613870	0.0168	
C	845.0000	71.93747 11.74631		0.0072	
R-squared	0.966651	Mean depende	1345.000		
Adjusted R-squared	0.949976	S.D. dependen	S.D. dependent var		
S.E. of regression	58.73670	Akaike info cr	iterion	11.29086	
Sum squared resid	6900.000	Schwarz criter	ion	10.98401	
Log Likelihood	-20.58172	Hannan-Quinr	Hannan-Quinn criter.		
F-statistic	57.97101	Durbin-Watson	2.101449		
Prob. (F-statistic)	0.016816				

FORMULA:

W15 = 200Z15 + 845 + Ut

TABLA 1. 16 Muestra 16

INFORME DE ENSAYO

DATOS DEL ANALISIS:	
MUESTRA:	# 16
FECHA DE ANALISIS:	16 de agosto de 2008
FECHA DE REPORTE FINAL:	1 de septiembre de 2008

ENSAYOS	RESULTADOS UFC/Gramo				UFC/Gramo	
	16-Aug	21-Aug	26-Aug	31-Aug		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	1110	1350	1740	2330	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

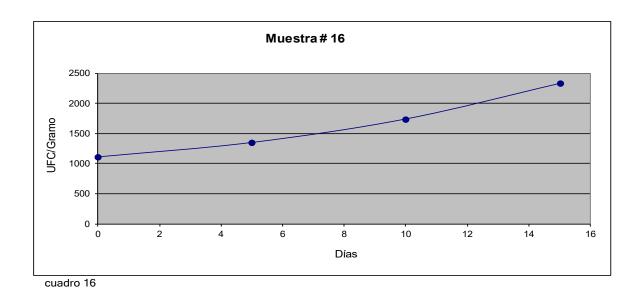


Figura # 16 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la decimo sexta quincena.

Variable	Coeficiente	Error Std.	Error Std. t-Estadístico Pr	
Z16	405.0000	55.45268	7.303524	0.0182
C	620.0000	151.8634	4.082616	0.0551
R-squared	0.963861	Mean depende	1632.500	
Adjusted R-squared	0.945791	S.D. dependen	t var	532.5646
S.E. of regression	123.9960	Akaike info cr	iterion	12.78523
Sum squared resid	30750.00	Schwarz criter	ion	12.47838
Log Likelihood	-23.57046	Hannan-Quinn	12.11186	
F-statistic	53.34146	Durbin-Watson	2.005691	
Prob. (F-statistic)	0.018236			

FORMULA:

W16 = 405Z16 + 620 + Ut

TABLA 1. 17 Muestra 17

MUESTRA:	# 17
FECHA DE ANALISIS:	1 de septiembre de 2008
FECHA DE REPORTE FINAL:	17 de septiembre de 2008

ENSAYOS	RESULTADOS UFC/Gramo				UFC/Gramo	
	01-sep	06-sep	11-sep	16-sep		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	1000	1320	1850	2350	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

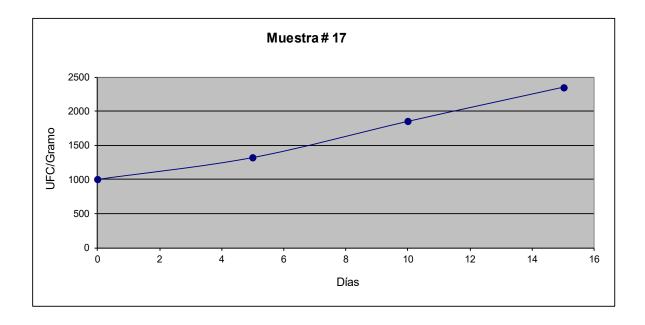


Figura # 17 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la decimo séptima quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad
Z17	458.0000	33.13608	13.82179	0.0052
C	485.0000	90.74690	5.344535	0.0333
R-squared	0.989640	Mean dependent var		1630.000
Adjusted R-squared	0.984459	S.D. dependen	t var	594.3624
S.E. of regression	74.09453	Akaike info cr	iterion	11.75541
Sum squared resid	10980.00	Schwarz criter	ion	11.44856
Log Likelihood	-21.51083	Hannan-Quinn criter.		11.08205
F-statistic	191.0419	Durbin-Watson stat		2.367213
Prob. (F-statistic)	0.005194			

FORMULA:

W17 = 458Z2 + 485 + Ut

TABLA 1. 18 Muestra 18

DATOS DEL ANALISIS:	
MUESTRA:	# 18
FECHA DE ANALISIS:	16 de septiembre de 2008
FECHA DE REPORTE FINAL:	2 de octubre de 2008

ENSAYOS	RESULTADOS UFC/Gramo				UFC/Gramo	
	16-Sep	21-Sep	26-Sep	1-Oct		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	1120	1400	1880	2350	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

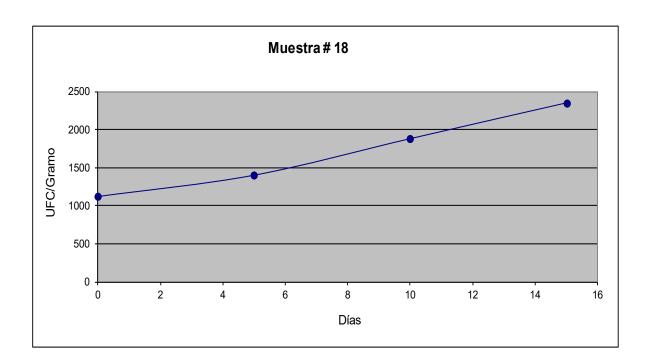


Figura # 18 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la decimo octava quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad
Z18	417.0000	33.51119	12.44360	0.0064
C	645.0000	91.77418	7.028121	0.0197
R-squared	0.987248	Mean dependent var		1687.500
Adjusted R-squared	0.980873	S.D. dependent var		541.8102
S.E. of regression	74.93330	Akaike info cr	iterion	11.77793
Sum squared resid	11230.00	Schwarz criter	ion	11.47107
Log Likelihood	-21.55585	Hannan-Quinn	criter.	11.10456
F-statistic	154.8433	Durbin-Watson stat		2.274889
Prob. (F-statistic)	0.006396			

FORMULA:

W18 = 417Z18 + 645 + Ut

TABLA 1. 19 Muestra 19

DATOS DEL ANALISIS:	
MUESTRA:	# 19
FECHA DE ANALISIS:	1 de octubre de 2008
FECHA DE REPORTE FINAL:	17 de octubre de 2008

ENSAYOS	RESULTADOS UFC/Gramo				UFC/	Gramo
	1-Oct	6-Oct	11-Oct	16-Oct		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	1030	1420	1770	2450	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	<u>-</u>
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03



Figura # 19 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la decimo novena quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad
Z19	461.0000	52.79204	8.732376	0.0129
С	515.0000	144.5770 3.562116		0.0706
R-squared	0.974442	Mean dependent var		1667.500
Adjusted R-squared	0.961663	S.D. dependent var		602.9027
S.E. of regression	118.0466	Akaike info criterion		12.68689
Sum squared resid	27870.00	Schwarz criter	Schwarz criterion	
Log Likelihood	-23.37378	Hannan-Quinn criter.		12.01352
F-statistic	76.25440	Durbin-Watson stat		2.343846
Prob. (F-statistic)	0.012862			

FORMULA:

W19 = 461Z19 + 515 + Ut

TABLA 1. 20 Muestra 20

DATOS DEL ANALISIS:	
MUESTRA:	# 20
FECHA DE ANALISIS:	14 de octubre de 2008
FECHA DE REPORTE FINAL:	30 de octubre de 2008

ENSAYOS	R	ESULTADOS	UFC/Gramo			
	14-oct	19-oct	24-oct	29-oct		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	1060	1290	1570	2310	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

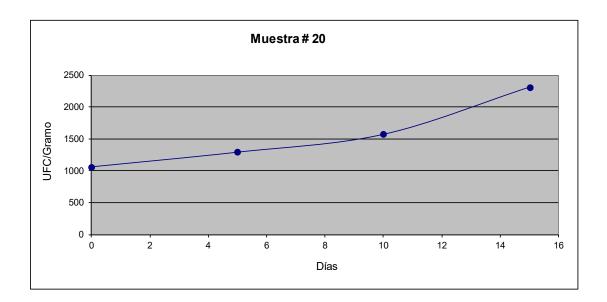


Figura # 20 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la vigésima quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad
Z20	403.0000	85.69131	4.702927	0.0424
C	550.0000	234.6753	2.343664	0.1438
R-squared	0.917073	Mean dependent var		1557.500
Adjusted R-squared	0.875609	S.D. dependen	t var	543.2848
S.E. of regression	191.6116	Akaike info cr	iterion	13.65567
Sum squared resid	73430.00	Schwarz criter	ion	13.34882
Log Likelihood	-25.31134	Hannan-Quinn criter.		12.98230
F-statistic	22.11753	Durbin-Watson stat		2.160248
Prob. (F-statistic)	0.042361			

FORMULA:

W20 = 403Z20 + 550 + Ut

TABLA 1. 21 Muestra 21

DATOS DEL ANALISIS:	
MUESTRA:	# 21
FECHA DE ANALISIS:	1 de noviembre de 2008
FECHA DE REPORTE FINAL:	17 de noviembre de 2008

ENSAYOS	R	ESULTADOS	UFC/Gramo			
	01-nov	06-nov	11-nov	16-nov		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	990	1340	1650	2100	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

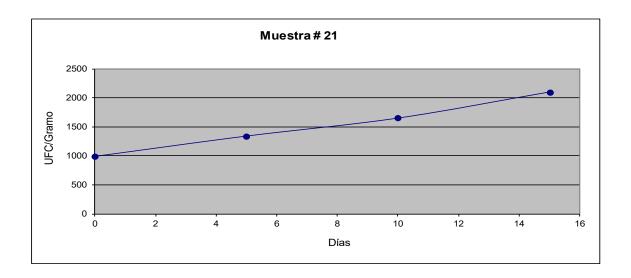


Figura # 21 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la vigésima primera quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad
Z21	364.0000	20.29778	17.93299	0.0031
C	610.0000	55.58777	10.97364	0.0082
R-squared	0.963599	Mean depende	nt var	1520.000
Adjusted R-squared	0.945398	S.D. dependen	S.D. dependent var	
S.E. of regression	72.52586	Akaike info cr	iterion	10.77519
Sum squared resid	10520.00	Schwarz criter	ion	10.46834
Log Likelihood	-21.42523	Hannan-Quinn	criter.	10.10183
F-statistic	52.94297	Durbin-Watson	ı stat	2.550485
Prob. (F-statistic)	0.018369			

FORMULA:

W21 = 364Z21 + 610 + Ut

TABLA 1. 22 Muestra 22

DATOS DEL ANALISIS:	
MUESTRA:	# 22
FECHA DE ANALISIS:	15 de noviembre de 2008
FECHA DE REPORTE FINAL:	1 de diciembre de 2008

ENSAYOS	R	ESULTADOS)	UFC/Gramo			
	15-Nov	20-Nov	ov 25-Nov 30-Nov				
días:	0	5	10	15	m	М	
Contaje de Aerobios Totales a 35 oC	1150	1480	1750	2310	1000	10 000	
Coliformes Fecales	AUSENCIA	-	-	-	4	100	
Escherichia Colí	AUSENCIA	-	-	-	-	-	
Salmonellas Spp	AUSENCIA	-	-	-	-	-	
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03	

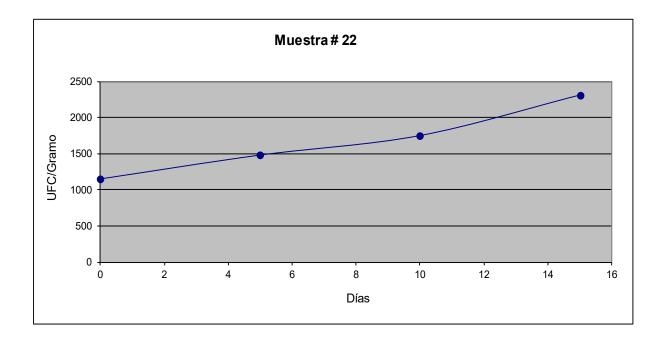


Figura # 22 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la vigésima segunda quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad
Z22	375.0000	43.98863	8.524929	0.0135
C	735.0000	120.4678	6.101214	0.0258
R-squared	0.973217	Mean depende	nt var	1672.500
Adjusted R-squared	0.959826	S.D. dependen	S.D. dependent var	
S.E. of regression	98.36158	Akaike info cr	iterion	12.32203
Sum squared resid	19350.00	Schwarz criter	ion	12.01518
Log Likelihood	-22.64406	Hannan-Quinn	criter.	11.64866
F-statistic	72.67442	Durbin-Watson	n stat	2.443152
Prob. (F-statistic)	0.013482			

FORMULA:

W22 = 375Z22 + 735 + Ut

TABLA 1. 23 Muestra 23

DATOS DEL ANALISIS:	
MUESTRA:	# 23
FECHA DE ANALISIS:	2 de diciembre de 2008
FECHA DE REPORTE FINAL:	18 de diciembre de 2008

ENSAYOS	RESULTADOS UFC/Gramo UFC/Gramo					Gramo			
	2-Dec	7-Dec	12-Dec	17-Dec					
días:	0	5	10	15	m	М			
Contaje de Aerobios Totales a 35 oC	1030	1370	1740	2140	1000	10 000			
Coliformes Fecales	AUSENCIA	-	-	-	4	100			
Escherichia Colí	AUSENCIA	-	-	-	-	-			
Salmonellas Spp	AUSENCIA	-	-	-	-	-			
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03			

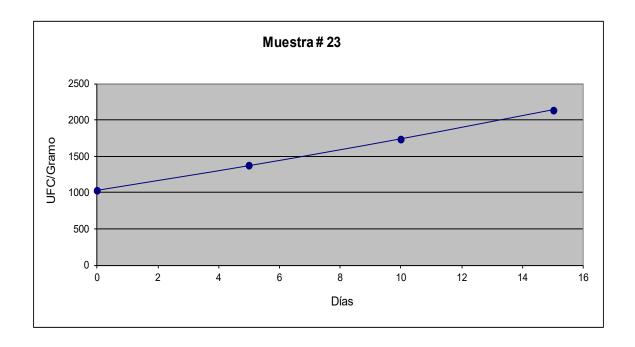


Figura # 23 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la vigésima tercera quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad
Z23	370.0000	9.486833	39.00142	0.0007
C	645.0000	25.98076	24.82606	0.0016
R-squared	0.998687	Mean depende	ent var	1570.000
Adjusted R-squared	0.998030	S.D. dependen	S.D. dependent var	
S.E. of regression	21.21320	Akaike info cr	riterion	9.253977
Sum squared resid	900.0000	Schwarz criter	rion	8.947125
Log Likelihood	-16.50795	Hannan-Quinr	n criter.	8.580612
F-statistic	1521.111	Durbin-Watson	n stat	2.000000
Prob. (F-statistic)	0.000657			

FORMULA:

W23 = 370Z23 + 645 + Ut

TABLA 1. 24 Muestra 24

DATOS DEL ANALISIS:	
MUESTRA:	# 24
FECHA DE ANALISIS:	14 de diciembre de 2008
FECHA DE REPORTE FINAL:	30 de diciembre de 2008

ENSAYOS	R	ESULTADOS)	UFC/Gramo		
	14-Dec	19-Dec	24-Dec	29-Dec		
días:	0	5	10	15	m	М
Contaje de Aerobios Totales a 35 oC	930	1340	1610	2210	1000	10 000
Coliformes Fecales	AUSENCIA	-	-	-	4	100
Escherichia Colí	AUSENCIA	-	-	-	-	-
Salmonellas Spp	AUSENCIA	-	-	-	-	-
Stafilococos Aureus Coag. +	AUSENCIA	-	-	-	5 x 10E02	1 x 10E03

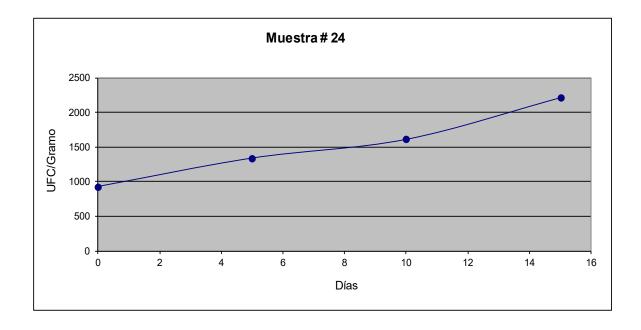


Figura # 24 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de análisis.

Datos de la vigésima cuarta quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad
Z24	411.0000	44.79955	9.174199	0.0117
C	495.0000	122.6886	4.034604	0.0563
R-squared	0.976789	Mean depende	nt var	1522.500
Adjusted R-squared	0.965183	S.D. dependen	S.D. dependent var	
S.E. of regression	100.1748	Akaike info cr	iterion	12.35856
Sum squared resid	20070.00	Schwarz criter	ion	12.05171
Log Likelihood	-22.71713	Hannan-Quinn	criter.	11.68520
F-statistic	84.16592	Durbin-Watson	n stat	2.770453
Prob. (F-statistic)	0.011674			

FORMULA:

W24 = 411Z24 + 495 + Ut

5.- DISCUSIÓN

5. I.-Determinación del Número de aerobios mesófilos a los 0, 5, 10, 15 días después de producido, de una muestra de filete de tilapia a temperatura constante de refrigeración de 1-5 °C.

El cuadro 1 muestra el promedio de los resultados de las mediciones realizadas durante 24 quincenas. Aparecen los valores promedio en UFC (Unidades Formadoras de Colonias), por gramo de muestra, medidos a intervalos de cinco días, siendo el cero el día de producción del filete.

En el cuadro 2 aparece el promedio de las mediciones quincenales anteriormente descritas; se observa un aumento de los valores de UFC/g hasta 2231.

Las pruebas organolépticas realizadas en cada etapa indicaron que, a los 15 días, es decir, 2231UFC/g como promedio, se iniciaba la descomposición, presentándose flacidez en el músculo, olor característico de descomposición y cambio de color de blanco a pardo rojizo, lo que indicaba que la carne no estaba apta para ser consumida.

TABLA 1. 25 Promedio de las muestras

	UFC/Gr.			
DIAS	0	5	10	15
1 SEMANA	890	1130	1290	1720
2 SEMANA	990	1180	1350	2100
3 SEMANA	1050	1230	1800	2600
4 SEMANA	980	1350	1600	2100
5 SEMANA	880	1220	1450	1950
6 SEMANA	1100	1360	1580	2200
7 SEMANA	1120	1360	1680	2450
8 SEMANA	1080	1340	1700	2320
9 SEMANA	950	1280	1680	2150
10 SEMANA	1120	1470	1850	2430
11 SEMANA	1200	1480	1870	2350
12 SEMANA	1070	1370	1690	2310
13 SEMANA	990	1360	1660	2280
14 SEMANA	970	1340	1750	2340
15 SEMANA	1080	1220	1390	1690
16 SEMANA	1110	1350	1740	2330
17 SEMANA	1000	1320	1850	2350
18 SEMANA	1120	1400	1880	2350
19 SEMANA	1030	1420	1770	2450
20 SEMANA	1060	1290	1570	2310
21 SEMANA	990	1340	1650	2100
22 SEMANA	1150	1480	1750	2310
23 SEMANA	1030	1370	1740	2140
24 SEMANA	930	1340	1610	2210

Promedio de la investigación

ENSAYOS	RESUL	TADOS UFC/	ADOS UFC/Gramo				UFC/Gramo	
	días:	0	5	10	15	m	М	
Contaje de Aerobios Totale	es a 35 oC.	1037	1333	1663	2231	1000	10 000	

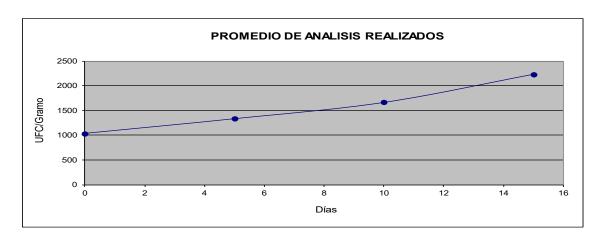


Figura # 25 Curva de crecimiento de Aerobios totales a 0, 5, 10, 15 días.

PROMEDIO DE MUESTRAS

Variable Dependiente: WP

Método: Mínimo Cuadrados Ordinarios para realizar las regresiones, en donde la varianza

de error es mínima.

Ejemplo: 1 al 4

Incluye Observaciones del primer (0), quinto (5), decimo (10) y decimo quinto (15) día de

análisis.

Datos de la vigésima cuarta quincena.

Variable	Coeficiente	Error Std.	t-Estadístico	Probabilidad
ZP	391.2000	45.36166	8.624023	0.0132
C	588.0000	124.2280	4.733232	0.0419
R-squared	0.973813	Mean dependent var		1566.000
Adjusted R-squared	0.960720	S.D. dependent var		511.7825
S.E. of regression	101.4318	Akaike info criterion		12.38350
Sum squared resid	20576.80	Schwarz criterion		12.07665
Log Likelihood	-22.76700	Hannan-Quinn criter.		11.71014
F-statistic	74.37378	Durbin-Watson stat		2.141573
Prob. (F-statistic)	0.013180			

FORMULA:

WP = 391.2ZP + 588 + Ut

5. II.-Crecimiento bacteriano en relación con el tiempo de conservación del filete.

TABLA 1. 26 Crecimiento bacteriano

	UFC/Gr.				
DIAS	0	5	10	15	
1 SEMANA	890	1130	1290	1720	
2 SEMANA	990	1180	1350	2100	
3 SEMANA	1050	1230	1800	2600	
4 SEMANA	980	1350	1600	2100	
5 SEMANA	880	1220	1450	1950	
6 SEMANA	1100	1360	1580	2200	
7 SEMANA	1120	1360	1680	2450	
8 SEMANA	1080	1340	1700	2320	
9 SEMANA	950	1280	1680	2150	
10 SEMANA	1120	1470	1850	2430	
11 SEMANA	1200	1480	1870	2350	
12 SEMANA	1070	1370	1690	2310	
13 SEMANA	990	1360	1660	2280	
14 SEMANA	970	1340	1750	2340	
15 SEMANA	1080	1220	1390	1690	
16 SEMANA	1110	1350	1740	2330	
17 SEMANA	1000	1320	1850	2350	
18 SEMANA	1120	1400	1880	2350	
19 SEMANA	1030	1420	1770	2450	
20 SEMANA	1060	1290	1570	2310	
21 SEMANA	990	1340	1650	2100	
22 SEMANA	1150	1480	1750	2310	
23 SEMANA	1030	1370	1740	2140	
24 SEMANA	930	1340	1610	2210	

En este cuadro se observa que el crecimiento bacteriano casi no varió con respecto al inicio de la siembra o sea al día cero; el promedio fue de 1037 UFC/Gramo de muestra.

Si se compara el valor mínimo 880, obtenido en uno de los análisis realizados y el valor máximo de 1200, se aprecia que son valores muy cercanos. Se refleja lo mismo para los siguientes días en que se lleva el análisis a los 5, 10 y 15 días después. El estudio demuestra un crecimiento casi acelerado y una curva casi puntual en el crecimiento de las bacterias al pasar el tiempo de cero a 15 días.

5. III.-Comparación del número de aerobios mesófilos con los estándares AOAC de crecimiento bacteriano para un alimento.

Según el Departamento de Pesca de la FAO en su título de Aseguramiento de la Calidad de los productos pesqueros en el Cuadro 1 se propone un plan de muestreo y limites microbiológicos recomendados para productos pesqueros (ICMSF 1986).

TABLA 1. 27 FAO

Producto	Ensayo	n	c	Límite por gramo		
				m	M	
Pescado fresco y congelado;	APC	5	3	5×10^{5}	10^{7}	

APC: AEROBIC PLATE COUNT

De forma general se establece en el Ecuador el APC tenga los siguientes valores:

$$m = 50.000, M = 500.000 (n = 5, c = 2)$$

A pesar que los limites solicitados por el Departamento de Pesca de la FAO, en el título de Aseguramiento de la calidad de los productos pesqueros, en donde con técnicas iguales aplicadas en esta investigación como es la ICMSF 1986, se tiene que los valores son mucho menores e inclusive por los solicitados por los compradores en el exterior, como se observa en el cuadro 4.2. Según **Connel**, (1978), los microrganismos son los agentes más importantes en la alteración del pescado fresco ya que son los que originan los sabores particularmente indeseables ligados a la alteración. Por tanto, el control de la alteración es en gran parte, el control de los microrganismos.

TABLA 1. 28: Resultados Obtenidos

ENSAYOS	RESULTADOS UFC/Gramo			UFC/Gramo		
días:	0	5	10	15	m	M
Contaje de Aerobios Totales						
a 35 o C.	1037	1333	1663	2231	1000	10 000

5. IV.-Determinación del tiempo de vida útil máximo para que el filete sea apto para el consumo humano.

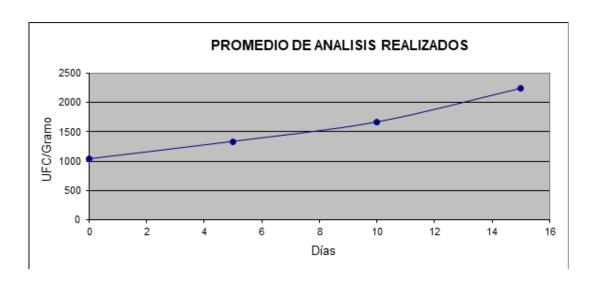


Figura # 26 Promedios de análisis realizados

Según el razonamiento anterior podemos apreciar que esta curva en donde se controla el crecimiento bacteriano contra los días de siembra, la cantidad de microrganismos sobrepasa las 2000 UFC/Gramo a partir del día 15 de conservación, manifestándose en este momento, de acuerdo a las pruebas organolépticas realizadas, signos evidentes de la descomposición del músculo del filete lo que lo hace no apto para el consumo humano. Se puede deducir que existe un aumento del crecimiento bacteriano. De acuerdo a **Huss (1999),** los métodos para la evaluación de la calidad del pescado fresco pueden ser divididos en dos categorías: sensorial e instrumental. El consumidor es quien da la pauta para detectar la calidad de filete fresco, sobre todo con respecto a lo sensorial. Es él quien define si se consume o no se consume, y por lo tanto es en esta parte donde se puede decir si está apto para el consumo humano o no.

COMPROBACIÓN DE LA HIPÓTESIS

La hipótesis de este trabajo es: "el número de aerobios mesófilos determina el tiempo de vida útil de los filetes refrigerados de la Tilapia (Oreochromis spp) a temperatura constante de 1-5 °C".

La evidencia recopilada al ddeterminar el Número de aerobios mesófilos a los 0, 5, 10, 15 días después de producido, indica que, a los 15 días, es decir, 2231UFC/g como promedio, se iniciaba la descomposición, presentándose flaccidez en el músculo, olor característico de

descomposición y cambio de color de blanco a pardo rojizo. Así mismo el crecimiento bacteriano casi no varió con respecto al inicio de la siembra o sea al día cero; el promedio fue de 1037 UFC/Gramo.

Si se compara el valor mínimo 880, obtenido en uno de los análisis realizados y el valor máximo de 1200, se aprecia que son valores muy cercanos. Se refleja lo mismo para los siguientes días en que se lleva el análisis a los 5, 10 y 15 días después. El estudio demuestra un crecimiento casi acelerado y una curva casi puntual en el crecimiento de las bacterias al pasar el tiempo de cero a 15 días.

La evidencia anteriormente expuesta le permite al autor de esta investigación aceptar la hipótesis como comprobada y proponer a la comunidad científica una técnica para emplear el número de aerobios mesófilos como indicador del tiempo de vida útil del filete de tilapia.

6.- CONCLUSIONES

- 1. Se determinó el número de aerobios mesófilos a los 0, 5, 10, 15 días después de producido, de una muestra de filete de tilapia a temperatura constante de refrigeración de 1-5 °C. los resultados indican que a los 15 días, es decir, 2231UFC/g como promedio, se iniciaba la descomposición. Además se considera que la ecuación estadística utilizada, dentro de las probabilidades es inferior al 10 %, como lo demuestran cada uno de los cálculos realizados, e inclusive en el análisis promedio realizado el que da para ZP de 1,32 %, para la variable WP.
- 2. El crecimiento bacteriano en relación con el tiempo de conservación del filete casi no varió con respecto al inicio de la siembra o sea al día cero; el promedio fue de 1037 UFC/Gramo de muestra. Se observó un crecimiento casi acelerado y una curva casi puntual en el crecimiento de las bacterias al pasar el tiempo de cero a 15 días.
- 3. Los resultados obtenidos se compararon con los estándares AOAC de crecimiento bacteriano para un alimento. De acuerdo a la FAO el limite por gramo para que el musculo del filete sea apto para el consumo humano debe estar entre 5 × 10⁵ y 1 x 10⁷ UFC/Gramo; en este trabajo los límites fueron 1 × 10³ y 1 x 10⁴ UFC/Gramo.
- 4. La determinación del tiempo de vida útil máximo para que el filete sea apto para el consumo humano se basó en el número de aerobio mesófilos, este tiempo es de 15 días.

7.- RECOMENDACIONES

"Procedimiento para la determinación del tiempo de vida útil de los filetes refrigerados de la Tilapia (Oreochromis spp) a temperatura constante de 1-5 °C a partir del conteo de aerobios mesófilos."

Los resultados obtenidos permiten asumir que el número de aerobios mesofilos es un bío indicador aceptable para la determinación del tiempo de vida útil, sin necesidad de realizar pruebas organolépticas ya que estas resultan inexactas. A continuación aparece la técnica sugerida por el autor, a partir de la empleada por The International Commission (1996), que está fundamentada en la ICMSF (1986).

- 1. Se prepara la muestra de Filetes de Tilapia troceándola o cortándola en trozos medianos y dejándola macerar con agua de peptona 0,1 %.
- 2. Se pipetea por duplicado en placas de Petri, alícuotas de 1 ml de las diluciones 1/10, 1/100, 1/1000, 1/10000, y 1/100000, se aconseja esta serie de diluciones en aquellos casos en que se desconoce el número aproximado de microrganismos presentes en la muestra, de todos modo debe sembrase tres diluciones seguidas, para nuestro caso es de conocer que el filete de tilapia viva no contiene un alto porcentaje de bacterias, ya que la carne al momento de filetear es estéril, según (CORPEI, 2001) los microrganismos se encuentran en la superficie externa y en las vísceras del animal pero durante la vida no invaden la carne estéril debido a que está protegido por las defensa naturales. Se funde el agar PCA utilizando vapor o agua hirviente, templando el medio PCA a 44 46 °C y se controla cuidadosamente su temperatura, verter inmediatamente en las placas de Petri 10 15 ml de medio fundido y templado.
- 3. Mezclar el inoculo con el medio fundido, de la forma siguiente:
 - (a) Imprimir a la placa movimientos de vaivén 5 veces en una dirección.
 - (b) hacerla girar 5 veces en sentido de las agujas del reloj.
 - (c) volver a imprimir movimientos de vaivén en una dirección que forme ángulo recto con la primera, y
 - (d) hacerla girar 5 veces en sentido contrario a las agujas del reloj.
- 4. Una vez solidificado el agar, invertir las placas e incubarlas a 35 °C +- 1 °C durante 48 horas.
- 5. Para el cálculo del recuento en placa elegir las dos placas, que presenten entre 30 y 300 UFC. Contar todas las colonias de cada placa, hallar la media aritmética de los dos valores y multiplicarla por el factor de dilución (la inversa de la dilución cuyas

- placas han sido seleccionadas). Dan el valor obtenido como el recuento en placa.
- 6. Para el cálculo y presentación de los resultados, deben utilizarse únicamente dos cifras significativas, que corresponden a los dígitos primero y segundo de la media de las colonias halladas. Los dígitos restantes tienen que ser sustituidos por ceros.

8.- GLOSARIO

- 1. ADITIVOS: Sustancias que se agregan a otras para darles cualidades de que carecen o para mejorar las que poseen.
- 2. AEROBIOS: Que tiene necesidad para vivir, de oxigeno gaseoso libre.
- ANTIMICROBIANO: Se dice de las sustancias químicas elaboradas por bacterias o mohos, que impiden el crecimiento, proliferación y actividad de otros microrganismos.
- 4. BACTERIAS: Ser vivo unicelular, procariota (sin núcleo individualizado).
- 5. CONTAMINACION: Alteración de la pureza de alguna cosa.
- 6. CONTAMINACION FECAL: Alterar la pureza de algo con heces fecales.
- 7. COLAGENOS: Sustancias albuminoides que existe en el tejido conjuntivo, en los cartílagos y en los huesos y que se transforma en gelatina por efecto de la cocción.
- 8. CALIDAD: Propiedad o conjunto de propiedades inherente a una cosa, que permiten apreciarla como igual, mejor o peor que las restantes de su especie.
- 9. DESINFECCION: Acción y efecto de desinfectar, quitar a una cosa u objeto la infección destruyendo los gérmenes nocivos.
- 10. DIMORFISMO: Propiedad de una especie animal de presentar entre uno y otro sexo caracteres morfológicos diferentes no relacionados directamente con la reproducción.
- 11. HIBRIDO: Se aplica al animal o al vegetal procreado por dos individuos de distinta especie.
- 12. MICRORGANISMO: Organismo microscópico y que solo puede verse a través de un microscopio.
- 13. NORMAS DE CALIDAD: Regla que se debe seguir para obtener calidad de alguna cosa.

14. NUCLEOTIDOS: Unidad elemental de los ácidos nucleicos formada por la unión de un azúcar, un acido orto fosfórico y una base púrica o pirimidica.

15. PRESERVANTES: Acción y efecto de preservar o preservarse.

16. PARAMETRO: Letra que designa en una ecuación una magnitud dada a la que se pueden atribuir valores diferentes.

paeden atrioun valores uncremes.

17. SALUBRIDAD: Calidad de salubre, bueno para la salud, saludable.

18. SENSIBLIDAD: Mecanismo inmunológico que el organismo da como respuesta a la

presencia de un antígeno o de una sustancia sensibilizadora.

19. SENSORIAL: Relativo a los sentidos o a sus órganos correspondientes.

20. TILAPIA: Pez que taxonómicamente no responde a un solo nombre científico, híbrido producto del cruce de cuatro especies de Tilapia: tres de ellas de origen africano

y una cuarta israelí.

21. TEXTURA: Disposición que tienen entre si las partículas de un cuerpo.

ABREVIATURAS

HPLC: Cromatografía Liquida de alta resolución.

NBVT: Nitrógeno Básico volátil Total.

INO: Inosina.

IMP: Inosina mono Fosfato.

IR: Índice de Rigor.

RM: Rigor Mortis.

Ut: Variable Aleatoria.

ICMSF: Comisión Internacional de Especificaciones microbiológicas de alimentos.

AOAC: Association of Official Analytical Chemists.

FAO: Food and Agriculture Organization.

APC, PCA: Agar Plate Count, Contaje de Aerobio en Placas

UFC: Unidades Formadoras de Colonias.

CIM: Concentración Inhibidora Mínima.

EAM: Empaque en Atmosfera Modificada.

CT: Coliformes Totales.

CF: Coliformes Fecales.

RT: Recuento Total de Aerobios.

9.- BIBLIOGRAFÍA

Álvarez Julia, Claudia P. Agurto, Ana M. Álvarez y José Obregón. .(2004).Resistencia antimicrobiana en bacterias aisladas de tilapias, agua y sedimento en Venezuela. Revista Científica, fcv-luz / vol. Xiv, nº 6, 491 – 499.

Connell, J, Control de la calidad del pescado. Editorial Acribia, Zaragoza. España, 1978.

- Corpei-Cbi Project, Tilapia: Perfil del Producto. Septiembre 2001. Conservación de Pescado y Barcos. http://www.atexport.com/pagesp/info/pescado.htm
- Fiallos Cárdenas, Cesar Eduardo. (2010). Estudio comparativo de la influencia del empaque, en la tilapia fresca, almacenado a temperaturas de refrigeración. http://www.dspace.espol.edu.ec/handle/123456789/13798
- Guijarro Revelo, José Vicente. (2007). Desarrollo de un sistema de envase y embalaje para la exportación del filete de tilapia roja ecuatoriana hacia el mercado norteamericano. http://bibdigital.epn.edu.ec/handle/15000/256
- Huss, HH (Ed.), Boerresen, T., Dalgaard, P., Gram, L., Jensen, B. Corporate Authors, FAO,
 (1999). El Pescado Fresco: Su Calidad y Cambios de su Calidad. Documento Técnico
 De Pesca 348. Laboratorio Tecnológico . Ministerio de Pesca. Dinamarca.
- Jiménez, Roberto. (2007). Enfermedades de Tilapia en Cultivo. Editorial Universidad de Guayaquil. Facultad de Ciencias Naturales. Guayaquil. Ecuador.
- Morales, Graciela, Blanco, Laura, Arias, María. (2004). Evaluación de la calidad bacteriológica de tilapia fresca (Oreochromisniloticus) proveniente de la Zona Norte de Costa Rica. *ALÁN*, dic. 2004, vol.54, no.4, p.433-437. ISSN 0004-0622

- Nanto, H., H. Sokooshi and T. Kawai (1993). Aluminium-doped ZnO thin film gas sensor capable of detecting freshness of sea foods. Sensors an actuators 13-14. http://www.fao.org/DOCREP/V7180S/v7180s0c.htm#bibliografia
- Suárez Ramírez, Diana Cristina (2010) Obtención de hidrolizado de proteína de pescado a partir de tilapia roja (Oreochromissp.). (2009). Rev.Fac.Nal.Agr. Medellín vol.62 no.1 Medellín.
- Suárez, Héctor Alicia De Francisco, Luiz Henrique Beirão, Sandra Pardo, Misael Cortés. (2007). Pérdida De Textura Post Mortem De La Carne De Pescado Durante El Almacenamiento En Frío. Acta biol. Colomb, Vol. 12 No. 1, 2007. 3–18.
- The International Commission on Microbiological Specifications for Foods of the International Association of Microbiological Societies, Microrganismos de los alimentos, Técnicas de análisis microbiológico,(1996). Volumen I, Editorial Acribia, Apartado 466, Zaragoza. España.
- Tomé, Elisabetta. Iglesias, Maybelyn. Kodaira, Makie. González, Aníbal. (2009). Efecto de la temperatura de almacenamiento en el rigor mortis y en la estabilidad de la tilapia (Oreochromis spp.) cultivada. Revista Científica 2000 Vol X No. 004

BIOINDICADOR DE LA VIDA ÚTIL DEL FILETE DE TILAPIA (OREOCHROMIS SPP.) REFRIGERADA

AUTORES:

Q.F. José Arcadio Zamora Laborde, M.Sc.

Q.F. José Alberto Zamora Guevara

Victor Emilio Estrada y Costanera 6038806 www.liveworkingeditorial.com

